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ABSTRACT 

We show that several schemes for compactification of the extra dimensions 
in Kaluza-Klein theories are unstable to a quantum gravitational process of bar- 
rier penetration: the universe can tunnel from a state with static extra dimen- 
sions to a de Sitter expansion of all dimensions. We estimate the tunneling rate 
and find that the present state of the universe is probably long-lived (in good 
agreement with observation). 
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Soon after developing the general theory of relativity, Einstein realized that 

his field equations implied the Universe was dynamic, contrary to the then- 

current belief in an eternal, unchanging world. In order to make his equations 

conform to his view of the Universe, he inserted a cosmological term to obtain a 

static solution. Eddington, Lemaitre, and Tolmanr subsequently showed, how- 

ever, that even this static model is unstable to expansion or collapse. The advent 

of modern Kaluza-Klein theories (and higher dimensional theories in general) 

marks a return to what one might call partially static cosmologies. In these 

theories, one looks for solutions with three dimensions expanding in Friedmann 

fashion, while D extra spatial dimensions are static and curled up into a compact 

manifold of unobservably small size, typically of order lpi/e, where 

lpi = (G~c-~)‘/’ is the Planck length and e is a gauge coupling constant. The 

radius of the compact dimensions is stabilized against small perturbations by 

balancing a positive ‘bare’ cosmological constant against the stress-energy of clas- 

sical or quantum fields. We show below, however, that in several proposed 

schemes the compactilication is semi-classically unstable: the compactified state is 

a ‘false vacuum’ which can decay by quantum tunneling through a potential bar- 

rier. In a separa,te paper*, we will discuss the possibility of classically rolling over 

the barrier at finite temperature. Although the effective four-dimensional cosmo- 

logical const.ant vanishes in the “static” compactilied state, once tunneling occurs 

the A term drives an exponential (de Sitter) expansion of all 3 + D spatial dimen- 

sions. 

We calculate the tunnel action in the semi-classical (lowest order in 6) 

approximation; the decay rate has the standard WKEl form F .- exp(-ac/AIiK*), 

where K* = 167rG = 16xlic/m~l, A is the ‘bare’ cosmological constant appearing 

in the Lagrangian, and o is a dimensionless constant. (Henceforth, we use units in 

which h = c = 1.) This tunneling action has the same form as that calculated 
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for several instabilities in four-dimensional quantum gravityz; however, the decay 

rate in Kaluza-Klein theories, for which typically A - e*m&, is much larger than 

in the four-dimensional case, for which the effective cosmological constant is res- 

tricted to A/m$t s lo-‘m. 

In the Kaluza-Klein ansatz, the spacetime manifold has the form of a pro 

duct space, which we take to be R’XQ3XSD, where Q3 stands for flat Rs, S3, or 

the 3-hyperboloid for k = 0,1,-l. The ground state metric is 

gMN = diad-1, a*(t) Em,, b*(t) grv ), where a(t) and b(t) are the scale factors for 

Q3 and SD, and &,,a and g,,” are metrics on the maximally symmetric unit 3-space 

and D-sphere. Upper case indices M,N run over all values, lower case latin indices 

m,n = 1,2,3 and lower case geek indices P,V = 5,6,...,4+D. The Einstein equa- 

tions can be written 

%N T,,-=T -?& 
D+2 I D+2 

where TMN is the stress energy of classical and/or quantum fields, T is its trace, 

and c is a gravitational constant in 4+D dimensions. In the compactification 

schemes under consideration, the non-vanishing components of the stress tensor 

can be written as 

Too = P ; T,, = gmnP3 ; T,, = &&D (2) 

with trace T = -p + 3p3 + Dpn , where p, p3, and pn are polynomial functions 

of b(t) (see below). The dynamical equations for the evolution of the scale factors 

are 

ii 3t+DK=1 
D+2 [A - 8G ((D+lb + 3~3 + DPD) ] 

. f 
2k t+&+&+-=i 

a* a2 D+2 b - 89~56~ + DPD + P-DIPS)] (4) 



-4. 

; + (D-1)$ + 3& + + = & [A-g&(-P + 3P,- 2PD)] (5) 

A number of compactification schemes have been considered in the litera- 

ture, and we consider two representative examples. In six-dimensional Einstein- 

Maxwell theory, the classical ground state of the U(1) gauge field is assumed to 

be a magnetic monopole configuration on the compact 2-sphere’. In this case, the 

terms in the energy momentum tensor are p, p3, pD .- l/e*b’, where e is the U(1) 

coupling constant. In the second model’, the energy-momentum tensor arises 

from one-loop quantum fluctuations in massless matter Eelds (due to the non- 

trivial topology of the spacetime), in analogy to the Casimir effect in quantum 

electrodynamics. In this case dimensional analysis giVeS 

p = Afb4+D , p3 = B/b4+D , pn = CIb4+D, where A,B and C are model- 

dependent (dimensionless) constants. Note that this result for Tm was obtained 

assuming a = b = 0, a >> b. We will discuss possible effects of correction terms 

below. 

Now focus on the Casimir model. For k = 0, Eqs.35 have a static solution 

a = so, b = b, if A = -B, while conservation of energy-momentum requires 

C = 4A/D. This gives 

A = D(D-l)(D+2) 

b:(D+4) 
(7) 

The only other solution to Eqs.35 with b=const. is a N eHt; to obtain power law 

behavior for a(t), one must consider additional stress-energy terms due, e.g., to 

radiation*. The solution (67) is stable against small perturbations: 

6b(t) = b(t) - b, has no exponentially growing modes. Consider, however, the 

case of large b(t), i.e., p, p3, pn << A/c. In the limit b(t) + co (and 
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k = 0 or a -+ co), the solutions to Eqs.35 become a,b - errt and a,b - ear, 

with H* = A/(D+2)(D+3). Using initial conditions b(0) >> b,, b(O) = 0, the 

approximate solution (exact in the limit t >> l/H) is b(t) - b(O)coshHt; i.e, if 

the radius is ever large (and initially static), it subsequently increases without 

bound instead of relaxing to the equilibrium value b,. This clearly represents an 

instability. Since it occurs whenever the compactification terms p, pr, pn - 0 as 

b + co, this analysis holds for the Einstein-Maxwell as well as the Casimir 

model. 

We can make this more concrete by regarding the radius of the extra dimen- 

sions as a scalar field in a potential in four dimensions. Schematically, we start 

with a piece of the gravitational action, Sa = -jd4+Dx&g~Rk/16~), where Rk 

is that part of the Ricci scalar R containing time derivatives of b, 

I 
. (8) 

An integration by parts and over the internal D dimensions gives 

Sk = -D(D-1)m~I~d4x~(b/b,)D-2(b/b,)2/16n, where rni; = c/V: is the 4 

dimensional Newton constant (VF is the volume of the compact D-sphere with 

radius b,), and g, is the determinant of the 4dimensional part of the metric. We 

define the new variable d(b) = mpl(b/b,)D/2((D-l)/2nD)1/2 which has the usual 

action for a homogeneous scalar Eeld in four dimensions. With this change of 

variable, Eq.5 becomes 

where, using Eqs.6,7 for the Casimir model, 
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v(4) = (D-Wd 

8x(D+2) 

where 4, s #(b,) is the static solution. The integration constant in Eq.10 has 

been chosen so that V(&,) = 0. Note that at 4 = dO, dV/dd = 0 and 

deV/d42 > 0, so this point is a local minimum of the potential’. At large 4, the 

potential is dominated by the negative quadratic term, and it is unbounded from 

below. 

It is natural to ask for the lifetime of the compactified state b = b, against 

quantum tunneling. Except for the extra term i2/& Eq.9 is the equation of 

motion for a homogeneous, minimally coupled scalar field in a 4dimensional 

Friedmann universe; if we extend our original ansatz for the metric so that 

b = b(?,t) (where ?Z lives in ordinary 3-space), Eq.9 would be replaced by the 

equation of motion for an ordinary kd scalar field d(St,t) in a potential V(d). 

Treating the 4dimensional gravitational degrees of freedom (a(t)) as a classical 

background, this problem is similar to the false vacuum decay discussed by Cole- 

man and De Luccia’. For an explicit calculation, we shall work with the Casimir 

model in 11 dimensions (D=7). In this case, V(4) has a local minimum at 4, N 

0.37mpl, a local maximum at &,, N 1.96& and a point degenerate witl the local 

minimum at & N 2.58&. (The form of V is only weakly dependent on D.) 

The tunneling solutions will be bubblelike configurations with thick walls*: 

at the instant of tunneling, d, is a few 4~ at the bubble center and falls gradually 

to 4 x 4, at inEnity. In terms of the 4geometry, the bubble interior is approxi- 

mately de Sitter, while the exterior is asymptotically flat. (Note this is the oppo- 

site of the usual case in which the eRective cosmological constant decreases in the 
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decay.) To estimate the tunnel action, we approximate Eq.10 (for D=7) with a 

polynomial 

V(3) = 0.093AJs - 0.159@/mPl (11) 

where the shifted Eeld F = + - I#, is used to place the metsstable minimum at 

the origin. (V(J) matches the true potential (10) at +,,, &,,, and dT and is gen- 

erally accurate to better than 30% for 3 less than a few &, which is the range of 

? which dominates the tunnel action.) Eq.11 has the form 

V(3) = M2p2/2 - @/3 which has been studied by Linde’. In the flat space 

approximation, he Buds the tunnel action S 2: 205M2/@ m 165m~JA. The decay 

rate per unit 4-volume is T/V, N m4ees, where the determinant m is a charac- 

teristic mass scale in the problem; here m - mpl. In a matter-dominated 

universe, the probability for a given point to remain in the compactiEed phase 

becomes small after a time r z (9xr/165V4)-‘1’ N (l/mpl)exp(41mr?,/A); this is 

longer than the age of the universe if A < 0.3m&. From Eqs.6,7, this corresponds 

to the requirements A 2 17, b, 2 11 I,,. The results for the Einstein-Maxwell 

theory are similar. 

In this analysis, we have neglected the ‘gravitational’ contribution to the 

tunnel action. Since the bubble interior is not Bat, this is not necessarily a good 

a,pproximation, and in fact dimensional analysis suggests the gravitational correc- 

tions can be comparable to the Eat space result. The behavior of the curved space 

solution is, however, qualitatively similar to the llat space approximation as long 

as lo M 2 H, where M is the mass parameter in the potential and H is the de 

Sitter Hubble constant for the bubble interior. From above, Ms N O.lQA, while at 

large 4, Hs = O.OlA, so the above analysis should be accurate to an order of 

magnitude or so. 

In the preceding analysis, we treated the ddimensional gravitational degrees 
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of freedom classically and then argued that their contribution did not qualita- 

tively agect the tunnel results. In principle, this treatment is inconsistent, 

because we have quantized only part of the gravitational field, the radius of the 

extra dimensions. In practice, however, the case of cosmological interest is decay 

from a state with a >> b (presumably the present state of our universe), for 

which quantum corrections to the 4geometry should be small. Alternatively, we 

could return to our original ansatz in which the metric is restricted to two quan- 

tum degrees of freedom, the radii a(t), b(t). As a result, we would now have a 

quantum mechanical rather than quantum field tunneling problem and could con- 

sider only homogeneous decays (i.e., no spatial dependence, so no finite bubble). 

This kind of truncation of the infinite gravitational degrees of freedom is called 

minisuperspace, and the resulting dynamics, governed by the Wheeler-Dewitt 

equation”, would be that of a 4+D dimensional mixmaster model12. In the limit 

a >> b, this case is similar to the 4dimensional tunneling problem considered by 

Hartle and Hawkir.$. In the WKFi approximation, the decay probability is P N 

exp(-om$JA), where o is of order-unity; not surprisingly, the exponenw 

itative agreement with the Eeld theoretic treatment. 

We conclude with a few comments about our results and approximations. 1) 

In the Casimir model, the one-loop stress energy was calculated in the static limit 

a = b = 0. In general, the time dependence of the scale factors will generate 

additional quantum corrections to both the potential V r3 and the kinetic terms 

appearing in the action “. The corrections to V are suppressed by inverse powers 

of a, while the kinetic corrections can change the sign of the kinetic terms. The 

latter effect would presumably destabilize the compactiiication itself (changing 

the sign of the kinetic term corresponds to inverting the potential); we conclude 

that these corrections will not allow one to circumvent the instability of 

compactification. 2) It has previously been pointed out that compactification is 



unsfable at high temperature ‘J but it is amusing to find that it is also meto- , 

slab/e at low temperature. 3) A semi-classical instability of the original five- 

dimensional Kaluza-Klein theory was discussed by Witten”‘, but the case dis- 

cussed in this paper is different; in particular, the present case does not involve a 

change in spacetime topology. In the five dimensional theory, it is not so surpris- 

ing to End an instability because there is no dynamical mechanism for 

compactification; instability in higher dimensions and for a broad class of 

compactification schemes is perhaps more disturbing. 4) Rubakovr’ has shown 

that the 4-dimensional quantum gravitational tunneling from closed Robertson- 

Walker to de Sitter space of Hartle and Hawking5 is accompanied by catastrophic 

particle creation. He speculates that the backreaction of this effect on the tunnel- 

ing may lead to a decay rate which is only power law- rather than exponentially 

suppressed. This would render the Kaluza-Klein instability much more 

dangerous. 5) Finally, we believe that the considerations raised in this paper may 

be relevant to superstring theories. Although the status of the cosmological con- 

stant in these theories is at present unclear, recently Nepomechie, Wu, and Zeers 

have considered superstring compactification of the generalized monopole 

(Freund-Rubin) type. Also, in the ‘low energy’ limit, superstrings give rise to 

higher derivative terms in the gravitational action”. For higher derivative 

La,grangians of the form alR2 + azR,,R”” + azRmnpgRmnpq + a,R + a,, the ins- 

tability discussed here can be avoided ifze az/az = -S/6 (for D=6 and assuming 

S6 compactification), while the ghost-free string actionl’ has az/az = -I/4. 

This work was supported in part by DOE and NASA. 
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